
 - 1 -

Performance Analysis of Three Database Server Distribution

Algorithms

By

Christopher G. Brown

Chapter 1

Introduction

Perhaps even more so than computer technology as a whole, technology related to the

internet has evolved at an exponential rate in recent years. Within the internet, http has

become the service protocol of choice, which means applications tend to be “web” based.

This growth makes a wide variety of applications available to a huge pool of potential

uses.

Before applications became web applications the maximum number of potential users

was limited to the size of the private network to which they were connected, generally a

maximum value in the thousands of users. Whereas, with web based applications it is not

unreasonable to expect a value in the millions of users.

To support an increase of this performance intensity it is important to optimize the

manner in which stored data can be extracted, processed and forwarded to a web client.

Hard drive technology, although improved in recent years, is still based on mechanical

technology and therefore is often the slowest part of the computer system in regard to

information retrieval. Even with state of the art disk drive technology adequate

performance can not be obtained with some of the most intensive web applications

involving the potential “millions of hits scenario.”

Therefore, given this bottleneck it seems reasonable to investigate storing the data on

multiple disks, instead of on just one so hopefully the inquireries can be distributed

across multiple devices instead of all being serviced by the same one. This methodology,

if properly configured, offers potential to reduce the data access time. However, to what

extent? Elnikety et al, 2004 [2] was able to improve throughput ten percent and decrease

workstation response time by a factor of 14. It appears that there are a number of

variables that influence the potential gain.

The first variable is workload intensity. It is expected as intensity increases the need to

utilize some form of distributed database increases. For example, Kanitkar et al, 2002 [5]

determined that distributed databases can offer significant performance advantages if the

system is large enough in terms of users. They found that it takes about 40 users to reach

this threshold.

 - 2 -

The second factor is number of nodes upon which the database is distributed. One would

expect that as the number of nodes increases, access time would be reduced. However,

Guster et al, 2003 [3], states that at some point a point of diminishing returns will occur.

This means the communication overhead among many nodes will negate the performance

effect of adding additional nodes.

The third variable is the algorithm used to distribute the inquiries across multiple nodes.

A symmetric algorithm, one that provides an equal chance of any given inquiry landing

on any specific node, would be expected to offer the most promise.

Although the concept of the distributed database has been around for over 20 years, it has

not dominated the computer landscape especially in business-related applications. The

added complexity and cost of adding additional database nodes has greatly inhibited its

development and use (Johnson, 2003 [4]). In fact many proponents of distributed

processing, like Anthes, 2003 [1], admit that the deployed systems have barely moved

beyond scientific, engineering and mathematical/statistical applications.

Although distributed database solutions are not widely deployed there is a real need for

them. Applications such as the “millions of hits scenario” cannot be ignored and solutions

need to be obtained if internet services are to continue to grow. Therefore research is

needed that will delineate the performance advantages of distributed data base and

suggest basic models of configuration. Smith et al, 2003 [7] agree and specifically state

that there is a need for more performance evaluation research over more and larger

databases.

Research Questions

This paper will explore the effectiveness of distributed database under a variety of

conditions by conducting experiments using a number of different combinations of the

variables listed above. Specifically, the following questions will be researched.

1. How does the workload intensity influence the need and performance of

distributed database applications?

2. How does the number of nodes the database is stored upon affect the data

access time?

3. How does the method used to assign a given query to a specific database node

influence the access time?

In the course of answering these questions a simple and easily replicated method of

measuring these factors will be described. It is hoped this method will have transferability

to distributed data applications beyond the one used in the experiments contained in this

paper.

 - 3 -

Scope of the Study

In the interest of keeping the study feasible and focused, several parameters are defined.

Server Operating System Selection. The server operating system selected for this project

is Linux. It was selected because of its openness and high degree of flexibility. It also

offers high performance due to its overhead and optimized code. It was also felt that its

Operating System (OS) script language would facilitate collection of performance data.

Database Software Selected. The database software selected was MySQL. This software

is well tuned to the Linux operating system and uses the standard SQL language. Because

MySQL is open source, it continues to grow in popularity.

Database Structure. The structure of the database will be limited to a single table.

Although more complex structures would have a great influence on the performance

potential, the goal of this study is to gain base line by varying the number of nodes, the

workload, and the distribution algorithm. Although out of the scope of this study

incorporating this variable might be well suited to subsequent research.

Workload Generator. Siege has been selected as the workload generator because it was

designed to let web developers measure the performance of their code under duress, to

see how it will stand up to load on the internet. It also allows for load variation by letting

the user hit a webserver with a configurable number of concurrent simulated users. Those

users place the webserver "under siege." The duration of the siege is measured in

transactions, the sum of simulated users and the number of times each simulated user

repeats the process of hitting the server.

Distribution Algorithms. Although there are multitude of possibilities, because this study

is preliminary in nature it will focus on three of the most basic: sequential, random and

load checking. The sequential method assigns requests in sequence among the allocated

nodes without regard to their current load. The random method assigns requests randomly

among the allocated nodes without regard to their current load. Whereas, the load

checking methods checks the node in question to make sure its utilization is less than a

certain load threshold.

Size of Cluster and Scaling Pattern. Although it would be interesting to test performance

on some fairly large clusters, it is important to be practical in scope. Therefore, the

maximum number of database nodes to be utilized will be limited to four. In terms of

scaling, it is common to use the following pattern from which to access performance: 1, 2

4, 8, and 16 processors. This “doubling” pattern has been widely used in other studies and

from a consistency and transferability perspective, will be adopted in this study.

These limitations made the study manageable in scope and will hopefully make it easier

for the reader to evaluate and use the results. Before presenting the details of the

methodology and the experiments used to evaluate the research questions, a review of the

literature in distributed databases is appropriate and will appear in the next chapter.

 - 4 -

Chapter 2

Review of Literature

The review of literature will be broken into four parts. First, the advantages of using a

distributed data base will be described. Second, design specification will be discussed.

Third, performance issues will be delineated. Last, the degree to which distributed

databases have been embraced by vendors will be discussed.

Advantages

Peddemors et al, 1998 [9] state there are numerous advantages to using the distributed

database architecture, especially when the load becomes intense. They further state it is

especially well suited for HTTP applications across the internet. Sobol et al, 1996 [10]

state that the increase in client-server and other telecommunication based applications

will spur dispersed and distributed processing, and hence the need for efficient access to

organizational databases will increase. These increasing demands on databases make

efficient storage space and access time important issues. Therefore, new and innovative

database architectures including distributed databases will be required. Building

distributed databases using the client/server architecture has been successful for quite

some time. For example, Roussopoulos et al, 1993 [6] developed an advanced data

management system at the University of Maryland in 1993. However, it appears that the

explosion of internet applications and the resulting “millions of hits scenario” has brought

the need for employing distributed data bases to the foreground.

Design Considerations

Amiri, 2003 [11] states that there are numerous inherent advantages for a multimedia

retailer to select a distributed database architecture. However, the design of the system

must be well thought out. The problem consists of planning the design/expansion of the

distributed database system by introducing new database servers and possibly retiring

some existing ones. The goal will be to reduce telecommunication costs for processing

user queries and server acquisition, operations and maintenance in a multi-period

environment where user processing demand varies over time.

Li et al, 2004 [12] also emphasized the importance of good design. They state, with the

availability of content delivery networks (CDN), many database-driven web applications

rely on data centers that host applications and database contents for better performance

and higher reliability. However, it raises additional issues associated with database/data

center synchronization, query/transaction routing, load balancing, and application result

correctness/precision. Therefore, they feel that these design issues must be addressed if

critical web applications in a distributed data center infrastructure are to be successful.

Welsh, 2002 [13] agrees that good design is important and further states that existing

programming/data models and operating system structures do not adequately meet the

https://mail.stcloudstate.edu/exchweb/bin/redir.asp?URL=http://www.sciencedirect.com/science?_ob=ArticleURL%26_udi=B6V0C-49SM21B-6%26_user=1822408%26_coverDate=08%252F02%252F2004%26_alid=208877753%26_rdoc=1%26_fmt=summary%26_orig=search%26_orig_alid=208877625%26_cdi=5643%26_sort=d%26_st=12%26_docanchor=%26view=c%26_acct=C000054574%26_version=1%26_urlVersion=0%26_userid=1822408%26md5=062f0d3d8cb71e353e4dacdcc8ff2fdc%23m4.cor*%23m4.cor*

 - 5 -

needs of complex, dynamic internet servers, which must support extreme concurrency

(on the order of tens of thousands of client connections) and experience load spikes that

are orders of magnitude greater than the average. Therefore, the manner in which the load

is balanced among distributed database nodes becomes crucial to obtaining adequate

retrieval performance.

Simha et al, 1997 [14] have described two of the major concerns of distributed database

design. One is the problem of characterizing the number of distinct sites accessed by

transactions in a distributed database, and the other is the problem of determining the

number of block accesses in a relation. The first problem is directly related to this study

because it deals with the number of nodes and the access pattern. The second problem

deals with how the data will be subdivided within a given node.

All the literature reviewed reveals concerns about maintaining reliability given the added

complexity of distributed databases. Xiong et al, 2001 [15] addressed that concern. Data

replication can help database systems meet the stringent temporal constraints of current

real-time applications, especially web-based directory and electronic commerce services.

A prerequisite for realizing the benefits of replication, however, is the development of

high-performance concurrency control mechanisms. Simply stated, this means all nodes

containing the data must be synchronized and up to date.

Wu et al, 1996 [16] agree that reliability is important and devised a protocol to address

the problem. Their paper presented a novel scheme for implementing a flexible replica

control protocol in distributed database systems. The scheme required fewer nodes to be

locked to perform the read/write operations. This not only provided better performance,

but also gave the system designer extra flexibility to implement the protocol.

In terms of practicality for smaller organizations, there has been some concern about

implementing distributed databases on cheaper less specialized hardware as opposed to

high end clusters. Soleimany et al, 2002 [17] proved that a distributed database can be

successfully implemented on standard PC architecture. Specifically they state, a network

of workstations (NOWs) is an attractive alternative to parallel database systems due to

the cost advantage. In a typical database, client workstations (nodes) submit

queries/transactions and receive responses from the database server. With even recent

PC-based client nodes providing traditional workstation-class performance, performance

improvements can be obtained by offloading some of the processing typically done on

the traditional server node to these powerful client nodes. Parallel query processing takes

advantage of the idle cycles on the client nodes to process the query.

Performance Issues

Cannataro et al, 2002 [18] are proponents of distributed processing. They state that the

integration of parallel and distributed computational environments will produce major

improvements in performance for both computing and data intensive applications in the

future. In fact their introductory article provides an overview of the main issues in

 - 6 -

parallel data intensive computing in scientific and commercial applications and

encourages the reader to go into the more in-depth articles contained later in the special

issue journal in which their work was published.

Jutla et al, 1999 [19] feel that it is important for end users to be able to evaluate the

performance potential of distributed databases. Their paper focuses on the design issues

in developing benchmarks for e-commerce. They state that because of the

multidisciplinary aspects of e-commerce and the various emerging and distinct e-

commerce business models, creating a single benchmark for the e-commerce application

is not feasible. Furthermore, they add, the diverse needs of small to medium enterprises

(SMEs) and big business motivate the need for a benchmark suite for e-commerce.

Rajamani, 2002 [20] states that the key to providing adequate performance in today’s

internet applications is attacking the data request time problem. Specifically, web sites

have gradually shifted from delivering just static html pages and images to customized,

user-specific content and a plethora of online services. Multi-tiered database-driven web

sites form the predominant infrastructure for most structured and scalable approaches to

dynamic content delivery. However, even with these scalable approaches, the request-

time computation and high resource demands for web sites with dynamic content

generate results in significantly higher latency times and lower throughput than for sites

with just static content and hence require well thought out designs.

Kanitkar, 2000 [21] states that the method for distributing the queries across the nodes

has a major impact on data request time. To attack that distribution problem he also

proposed a new policy for scheduling transactions that assigns higher priorities to

transactions that have more of their required data available locally. Then, in order to

further improve the efficiency of the distributed database, he proposed a load-sharing

mechanism that coordinates the movement of data and transactions so as to process each

transaction at the site that offers the highest probability of successful completion.

This concern for load balancing within database nodes is shared by Huaa et al, 1999 [22].

Specifically, they feel that although a symmetric distribution might be a good starting

point for the inter-arrival distribution of requests, sampling the inter-arrival distribution

of the application in question and tuning the load balance algorithm appropriately could

lead to improved performance.

Fricksa et al, 1999 [23] also concur with the need for load balancing and have studied this

distribution question. Specifically, they proposed an analytic approach to compute the

response-time distribution of operator consoles in a distributed data environment. The

technique developed is based on Markov regenerative processes (MRGPs) and described

with the assistance of deterministic and stochastic Petri nets. For database applications

with non-symmetric distributions this methodology offers promising results.

 - 7 -

Vendor Acceptance

Keyes, 1998 [24] states that vendors see network distributed data bases as important to

the future growth and development of web-based applications. Her analysis is based on

the following question. What do you get if you combine the Internet, or an Intranet, and a

relational database management system (DBMS) or even an object oriented DBMS?

Almost heaven, according to several database and web software companies. That is why

the leading database vendors, Netscape, and others are engaged in a frantic rush to release

products, stake out territory, or just map strategy to make it happen.

Keyes delineates the vendor’s long term goal. In the past year, all the major relational

DBMS companies—including Informix, Oracle, Sybase, IBM, and Microsoft—spelled

out how they will let their customers combine the benefits of web technology with

databases. Ultimately, everyone wants to support heavy-duty transaction processing. The

immediate goal is to tie databases more tightly to the web through new products that can

do things like accept a query from a web browser, extract the data from a database, and

format it in HTML for return to the web. The long-range goal is nothing short of robust,

secure transaction processing.

In terms of the Open Systems Interconnect (OSI) model, Keyes describes the vendor’s

interpretation. Database vendors, already secure in the art of three-tier database

processing, see the web as the ultimate in middleware—widely distributed, platform

independent and easy to use.

Furthermore, the potential of distributed databases has already been embraced and

implemented by vendors although aimed at high-end users. In fact, Townsand et al, 2003

[8], in a white paper for Oracle report that with distributed processing their database

product now scales to support millions of transactions per minute.

With the review of literature now complete, Chapter 3 will focus on the research

methodology and results. Conclusions and recommendations will appear in Chapter 4.

 - 8 -

Chapter 3

Methodology and Results

As stated earlier there are three research questions designed to guide this study:

1. How does the workload intensity influence the need and performance of

distributed database applications?

2. How does the number of nodes the database is stored upon affect the data

access time?

3. How does the method used to assign a given query to a specific database node

influence the access time?

These questions can be modified to provide three null hypotheses which can be tested

through experimentation.

 H1. Workload intensity has no affect on the retrieval time of records from a

distributed database and hence on the delay back to the originating client.

 H2. The number of nodes a database is stored upon has no affect on response time

back to the originating client.

 H3. The algorithm used to distribute requests to a given distributed database node

has no affect on the delay back to the originating client.

In order to collect data to test these hypotheses a database test bed will be devised in

which the workload can simulated for any number of concurrent client browser sessions.

The distribution algorithm can be varied and the number of nodes on which the database

is distributed can be varied from one to four. A drawing of this test bed appears below as

Figure 1.

 - 9 -

Figure 1.

Linux Db Servers running PHP & MySQL

Linux Client with Siege

Linux Apache Server

Linux with TCP/DUMP

Db1

..59.70

Db2

..59.71

Db3

..59.72

Db4

..59.73

The actual collection agent within this environment will be a packet sniffer process

generated by TCPDUMP. This collection agent will trap data from each packet generated

by the experimental tests. The URL’s used to test the three methods were sequential

(http://199.17.59.65/page/?function=sequential), random

(http://199.17.59.65/page/?function=random) and load balanced

(http://199.17.59.65/page/?function=load). The apache server would then redirect the

output based on the predefined algorithm set up for each method. The following

variables will appear in each packet record: time stamp, source Media Access Control

(MAC) address, destination MAC address, size of the packet, source network.node.port

address, and destination network.node.port address. This data, once processed can

provide metrics in the following categories: delay to the client, data throughput, and data

intensity. The workload was generated by a high-end processor running Linux. The

software used Siege (see Appendix A), which is able to generate web traffic streams of

varying intensity. For the experiments run herein the traffic of eight consecutive groups

of 50, 100, 200, and 400 clients was generated in four separate tests. The client requests

were forwarded to a Linux webserver via a 100 mbps Ethernet network. That webserver

in turn made the disk Input/Output (I/O) requests to either one, two or four database

servers running a MYSQL database consisting of a single indexed table having 29 fields

containing 11,552 records. In the case where multiple database servers are used the same

database was replicated to each database node. Therefore, the data request could be filled

http://199.17.59.65/page/?function=sequential
http://199.17.59.65/page/?function=random
http://199.17.59.65/page/?function=load

 - 10 -

by any one of the four potential databases and get the same results. Different methods

were used to determine which of the data base servers (if multiple db servers were used)

would receive any given request. In the sequential method, the requests followed a set

sequence such as server one, then two, then three, then four, then back to one. The

random method used a random number generator to select a dbserver randomly from the

pool of servers. It was hoped that if the number generator was truly random that the work

load would get evenly distributed. The load balancing method monitored the operating

system on each potential database node to ascertain its current load in real time.

Dbservers under heavy loads, which were unable to report in a timely interval, were

assumed to be at 100% utilization. Selection was based on the lowest utilization currently

reported. For sample data and the PHP code used on the distribution Apache web server

and each of the dbservers see Appendix B. The data collected is reported in a series of

Tables. A separate table is provided for each of the four different client loads tested. The

data sample column is used, intermittently, to separate out multiple tests using the same

client variables.

Table 1

8 Consecutive Iterations of 50 Concurrent Sessions.

Data
Sample

Client
(A) client 1
(B) zeus

Query
Distribution

Type
Sequential
Iterations

Server
Nodes Clients

Average
Delay (ms)

Throughput
(bytes/s)

Packet
Intensity

(packets/s)

1 A N/A 8 1 50 2.07193316 92758.467 241.321

1 A Sequential 8 2 50 0.74688173 191275.131 669.450

1 A Sequential 8 4 50 0.39466387 312233.329 1266.901

1 A Random 8 2 50 0.71621023 167432.264 698.119

1 A Random 8 4 50 0.47683332 275472.700 1048.584

1 A Load Balanced 8 2 50 0.17195826 252105.315 2907.682

1 A Load Balanced 8 4 50 0.08090560 522526.965 6180.042

The data collected at the 50 client level is displayed in Table 1. At the 50 client level,

each test was performed once per method and dbserver node configuration. As the

session load increases in Tables 1 – 4, the performance difference is amplified and

suggests a higher performance return per additional dbserver node.

 The first column designates which data sample the results were computed from.

 The second column indicates that the client workload stream was generated by a

single Intel machine.

 The third column describes the database node allocation method. This concept is

not applicable when only one dbserver is used.

 The fourth column describes the number of times that the simulated 50 clients

generated a request stream.

 - 11 -

 The fifth column depicts the number of database servers used.

 The sixth column reports the number of clients generating the workload.

 The seventh column reports the average delay back to the client in filling the

request. It is clear that all three distribution types improve the performance

beyond the single database server. At the two database server level the sequential

and random methods improve it by about 1.3 ms and the load balancing method

shows even greater improvement by reducing the delay 1.9 ms. At the four

dbserver level the results are even more dramatic. The sequential and random

methods reduce the delay by about 1.6 ms whereas the load balancing method

reduces the delay by almost two ms.

 The eighth column depicts the throughput in bytes per second. As would be

expected when delay is reduced, the same amount data is delivered more quickly

which results in higher per capita delivery rate. Throughput was improved from

about 92,000 bytes/sec on the single database model to about 1/2 million

bytes/sec on the load balanced model using four dbservers.

 The last column reports the intensity of packet traffic. As would be expected these

values follow a pattern similar to the previous column in that as delay decreases

packet intensity increases. In this case the packet intensity at the largest delay

value was about 240 packets/sec. While at the smallest observed packet intensity

delay value was about 6,000 packets/sec.

Table 2

8 Consecutive Iterations of 100 Concurrent Sessions.

Data
Sample

Client
(A) client 1
(B) zeus

Query
Distribution

Type
Sequential
Iterations

Server
Nodes Clients

Average
Delay (ms)

Throughput
(bytes/s)

Packet
Intensity

(packets/s)

1 A N/A 8 1 100 3.88490715 44360.966 128.703

1 A Sequential 8 2 100 0.71031160 197973.048 703.916

1 A Sequential 8 4 100 0.37551237 361269.535 1331.514

1 A Random 8 2 100 0.63998721 202004.413 781.266

1 A Random 8 4 100 0.44903326 312168.375 1113.503

1 A Load Balanced 8 2 100 0.13790886 318776.122 3625.583

1 A Load Balanced 8 4 100 0.08812921 484603.770 5673.488

2 A Load Balanced 8 4 100 0.07656717 556347.453 6530.214

The data collected at the 100 client level is displayed in Table 2. At the 100 client level,

multiple tests were conducted using the same configuration of dbserver nodes and

selected query distribution method, to allow for analysis of variance for further research

on this topic.

 - 12 -

 The first column designates which data sample the results were computed from,

as occasionally multiple tests were performed using the same configuration.

 The second column indicates that the client workload stream was generated by a

single Intel machine.

 The third column describes the database node allocation method. This concept is

not applicable when only one dbserver is used.

 The fourth column describes the number of times that the simulated 100 clients

generated a request stream.

 The fifth column depicts the number of database servers used.

 The sixth column reports the number of clients generating the workload.

 The seventh column reports the average delay back to the client in filling the

request. It remains clear that all three distribution types improve the performance

beyond the single database server. At the two database server level the sequential

and random methods improve it by about 3.2 ms and the load balancing method

shows even greater improvement by reducing the delay 3.7 ms. At the four

dbserver level the results are slightly more dramatic. The sequential and random

methods reduce the delay by about 3.5 ms whereas the load balancing method

reduces the delay by almost 3.8 ms.

 The eighth column depicts the throughput in bytes per second. As would be

expected when delay is reduced the same amount of data is delivered more

quickly which results in higher per capita delivery rate. Throughput improved

from about 44,000 bytes/sec on the single database model to about 1/2 million

bytes/sec on the load balanced model using four dbservers.

 The last column reports the intensity of packet traffic. As would be expected these

values follow a pattern similar to the previous column in that as delay decreases

packet intensity increases. In this case the packet intensity at the largest delay

value is about 130 packets/sec. While at the smallest delay, observed packet

intensity is about 6,500 packets/sec.

 - 13 -

Table 3

8 Consecutive Iterations of 200 Concurrent Sessions.

Data
Sample

Client
(A) client 1
(B) zeus

Query
Distribution

Type
Sequential
Iterations

Server
Nodes Clients

Average
Delay (ms)

Throughput
(bytes/s)

Packet
Intensity

(packets/s)

1 A N/A 8 1 200 4.80601741 17878.602 104.036

1 A Sequential 8 2 200 5.19456850 21524.983 96.254

1 A Sequential 8 4 200 0.34005095 330987.386 1470.368

1 A Random 8 2 200 13.61430900 8529.467 36.726

1 A Random 8 4 200 0.89513973 157894.511 558.572

1 A Load Balanced 8 2 200 0.10743538 424712.763 4653.961

1 A Load Balanced 8 4 200 0.05969465 724683.596 8375.961

The data collected at the 200 client level is displayed in Table 3. At the 200 client level,

each test was performed once per method and dbserver node configuration.

 The first column designates which data sample the results were computed from.

 The second column indicates that the client workload stream was generated by a

single Intel machine.

 The third column describes the database node allocation method. This concept is

not applicable when only one dbserver is used.

 The fourth column describes the number of times that the simulated 200 clients

generated a request stream.

 The fifth column depicts the number of database servers used.

 The sixth column reports the number of clients generating the workload.

 The seventh column reports the average delay back to the client in filling the

request. Aside from the elevated delay in the two dbserver level it remains clear

that all three distribution types at the four dbserver level improve the performance

beyond the single database server. At the two database server level the sequential

method remains relatively consistent whereas the random method shows an

increase in delay by as much as 8.8 ms and the load balancing method shows a

dramatic improvement by reducing the delay 4.7 ms. At the four dbserver level

the results are completely different. The sequential method shows a reduction of

about 4.5 ms and the random method shows a reduction in the delay by about four

ms whereas the load balancing method reduces the delay by 4.7 ms.

 The eighth column depicts the throughput in bytes per second. As would be

expected when delay is reduced the same amount of data is delivered more

quickly which results in higher per capita delivery rate. Throughput improved

 - 14 -

from about 18,000 bytes/sec on the single database model to about 3/4 million

bytes/sec on the load balanced model using four dbservers.

 The last column reports the intensity of packet traffic. As would be expected these

values follow a pattern similar to the previous column in that as delay decreases

packet intensity increases. In this case the packet intensity at the largest delay

value is about 100 packets/sec. While at the smallest delay value observed packet

intensity is about 8,400 packets/sec.

Table 4

8 Consecutive Iterations of 400 Concurrent Sessions.

Data
Sample

Client
(A) client 1
(B) zeus

Query
Distribution

Type
Sequential
Iterations

Server
Nodes Clients

Average
Delay (ms)

Throughput
(bytes/s)

Packet
Intensity

(packets/s)

1 A N/A 8 1 400 4.20020566 23200.616 119.042

1 B N/A 8 1 400 21.56025828 5609.872 23.191

1 A Sequential 8 2 400 0.62360851 216110.392 801.785

1 B Sequential 8 2 400 11.54540789 8978.663 43.307

1 A Sequential 8 4 400 0.31362455 385330.204 1594.263

1 B Sequential 8 4 400 0.71562455 166563.402 698.690

1 B Random 8 2 400 7.02728106 14320.478 71.151

1 B Random 8 4 400 5.76863794 19649.033 86.676

1 A Load Balanced 8 2 400 0.26592366 170338.792 1880.239

2 A Load Balanced 8 2 400 0.24486395 211604.990 2041.950

3 A Load Balanced 8 2 400 0.13944143 358677.363 3585.735

4 A Load Balanced 8 2 400 0.43814796 99091.412 1141.167

1 A Load Balanced 8 4 400 0.09072802 474901.359 5510.977

2 A Load Balanced 8 4 400 0.12549306 346656.873 3984.284

3 A Load Balanced 8 4 400 0.60850789 87940.314 821.682

4 A Load Balanced 8 4 400 0.12308939 350594.854 4062.089

The data collected at the 400 client level is displayed in Table 4. At the 400 client level,

multiple tests were conducted using the same configuration of nodes and selected query

distribution method, to allow for analysis of variance for subsequent research on this

topic. For the purposes of this paper, preliminary disciplinary analysis will be the focus.

Of the four Tables, Table 4 demonstrates the highest performance gain when moving

from a single dbserver to a four node distributed dbserver array.

 The first column designates which data sample the results were computed from as

occasionally multiple tests were performed using the same configuration.

 - 15 -

 The second column indicates that the client workload stream was generated by a

single Intel machine and in some instances by two clients.

 The third column describes the database node allocation method. this concept is

not applicable when only one dbserver is used.

 The fourth column describes the number of times that the simulated 400 clients

generated a request stream.

 The fifth column depicts the number of database servers used.

 The sixth column reports the number of clients generating the workload.

 The seventh column reports the average delay back to the client in filling the

request. It remains clear that all three distribution types improve the performance

beyond the single database server. At the two database server level the sequential

method demonstrated improvement by about 3.6 ms whereas the random method

indicates an increase in delay by about 2.8 ms. The load balancing method shows

the greatest improvement by reducing the delay four ms. At the four dbserver

level the results are slightly more dramatic. The sequential method demonstrates a

reduction of almost 3.9 ms whereas the random methods increased the delay by

about 1.5 ms. The load balancing method reduces the delay by almost 4.1 ms.

 The eighth column depicts the throughput in bytes per second. As would be

expected when delay is reduced the same amount of data is delivered more

quickly which results in higher per capita delivery rate. Throughput improved

from about 23,000 bytes/sec on the single database model to about 1/2 million

bytes/sec on the load balanced model using four dbservers.

 The last column reports the intensity of packet traffic. As would be expected these

values follow a pattern similar to the previous column in that as delay decreases

packet intensity increases. In this case the packet intensity at the largest delay

value is about 120 packets/sec. While at the smallest delay value observed packet

intensity is about 5,500 packets/sec.

 - 16 -

A comparison of values at the various client levels is best depicted graphically and Figure

2-10 will depict the values observed on average delay, throughput, and packet intensity.

Average delay is depicted by Figures 2-4, with Figure 2 showing the results with the

sequential method. The results from the random method are reported in Figure 3 and the

results for the load balancing method are in Figure 4. Detailed plots of session times and

packet payloads for the sequential, random and load balanced models by loads of 50, 100,

200 and 400 concurrent sessions can be found in Appendix D.

Figure 2

 - 17 -

Figure 3

 - 18 -

Figure 4

In all methods delay generally decreases as the number of dbservers is increased.

However, in the case of the random method delay actually increased when moving from

one to two servers, and also showed some improvement (decrease) when using four

dbservers. It is clear that of the three methods used the load balancing was the most

efficient. Although the sequential method resulted in the desired decreasing linear

pattern, it was not as pronounced as with the load balancing method. The random method

actually demonstrated more efficiency loss due to calculation overhead at the 2 dbserver

level and didn’t obtain the efficiency that either of the other two models had at higher

load levels. The load balancing method showed the most dramatic improvement at all

levels when compared to the other two models.

 - 19 -

Figure 5

 - 20 -

Figure 6

 - 21 -

Figure 7

With the decrease of delay by adding additional dbservers, an increase in throughput is

expected. The results for throughput are not as dramatic as delay. By adding additional

dbservers there is a somewhat liner trend with the throughput increase as we move from a

sequential model to a load balanced model. As shown in Figure 7, using the random

model the data with two and four dbservers are closely related and nearly congruent.

This congruency can be largely attributed to the calculation overhead effect of the

random algorithm as seen in figures 2 – 4. Further testing would be required to predict

when the throughput thresholds would be reached by adding more dbservers and

contrasting the sequential results with the load balanced results. The sequential method

appears to deliver a nonlinear trend which depicts a higher return for each additional

dbserver. However, it should be noted that the load balanced throughput at four

dbservers approaches 1/2 million bytes per second whereas the sequential model at four

nodes demonstrates a throughput of just over 1/3 million bytes per second.

 - 22 -

Figure 8

 - 23 -

Figure 9

 - 24 -

Figure 10

In all methods packet intensity generally increases as the number of dbservers is

increased. However, in the case of the random method there is a clear indication that

overhead is costly until a higher connection load is sustained. The load balanced model is

even more efficient then the sequential model. The load balanced model peaks with four

dbservers undergoing a load of 400 connections at just above 5,500 packets per second

whereas the sequential model delivers at a bit under 1,600 packets per second. The

random model results, with two and four dbservers, are closely related and nearly

congruent. This congruency can be largely attributed to the calculation overhead effect

of the random algorithm as seen in figures 2 – 4. Further testing would be required to

predict when the packet intensity thresholds would be reached by adding more dbservers

and contrasting the sequential results with the load balanced results.

 - 25 -

Chapter 4

Conclusions

Rejection of the Three Null Hypotheses

H1. Workload intensity has no affect on the retrieval time of records from a distributed

database and hence on the delay back to the originating client.

When moving from 50 concurrent sessions to 400 concurrent sessions on a single

dbserver node, the delay increases by a factor of two. Adding additional dbserver nodes,

distributing the workload among four nodes and increasing the concurrent sessions from

50 to 400 will increase the delay by almost 330%. Therefore hypothesis H1 must be

rejected.

H2. The number of nodes a database is stored upon has no affect on response time back

to the originating client.

Using the load balanced method and moving from one dbserver to four dbservers under a

workload of 50 concurrent sessions there is a decrease in average delay by 96%. Setting

the workload to 400 concurrent sessions, using the load balanced method and moving

from one to four dbserver nodes decreases the average delay by 98%. Therefore

hypothesis H2 must be rejected.

H3. The algorithm used to distribute requests to a given distributed database node has no

affect on the delay back to the originating client.

Setting the workload to 50 concurrent sessions, using four dbservers, and switching from

the load balanced to the sequential method, the average delay increases by almost 490%

and by almost 590% when switching to the random method. When increasing the

workload to 400 concurrent sessions, using four dbservers, and switching from the load

balanced method to the sequential method, the average delay increases by almost 350%

and by over 6,000% when switching to the random method. Therefore hypothesis H3

must be rejected.

Performance Gain as Attributed to Adding Dbservers

Average Delay

The Sequential model demonstrates a decrease in delay when moving from a single

dbserver under a load of 50 concurrent sessions to a four dbserver model under the same

load by 81%. This effect is amplified when the load increases to 400 concurrent sessions,

reducing the delay by 98%.

It is difficult to measure the scalability with the load balanced model as it offers an

immediate delay reduction of 96% even at the 50 session level when moving to four

 - 26 -

dbservers. The effect is relatively consistent when we increase the load to 400 concurrent

sessions resulting in a reduction in delay from the single dbserver model under 400

concurrent sessions by 98%.

The Random Model offers the least promising results when addressing packet delay.

Compared to an 81% decrease with the sequential model and a 96 % decrease with the

load balanced model, the random model offers a mere 77% decrease in average delay

under a load of 50 concurrent sessions when moving from a single dbserver to four

dbservers. Adding the same number of dbservers under a higher load of 400 concurrent

sessions actually increases the average delay under the random model by 37%. This delay

increases by 67% when going to two db servers.

Throughput

The sequential model offers a consistent increase in performance when moving from a

single dbserver to four dbservers. Under a load of 50 concurrent sessions the increase to

four dbservers results in a gain in throughput of almost 240%. When moving from a

single dbserver under a load of 400 concurrent session to 4 dbservers, throughput is

increased by 1,560%.

The load balanced model demonstrated the largest increase in throughput: 3,953% at a

load of 200 concurrent sessions when moving from a single dbserver to four dbservers.

A load of 400 concurrent sessions moving from one dbserver to four dbservers results in

increased throughput for the load balanced model of just under 1,950%, a much lower

return then the 200 session load.

The random model offers a decrease in throughput when moving from a single dbserver

to four dbservers under a load of 400 concurrent sessions of 15%. Moving from one

dbserver to two dbservers under the same load results in a decrease in throughput of 38%.

Packet Intensity

The sequential model peaks with an increase of packet intensity at the 200 concurrent

sessions level, when moving from one dbserver to four dbservers, by 1,310%. Under a

load of 200 concurrent sessions, there is a decrease in packet intensity when moving from

one dbserver to two dbservers by 7% under the sequential model. When the load is

increased to 400 concurrent sessions and moving from a single dbserver to four

dbservers, the sequential model drops back to an increase in packet intensity of just

below 1,240%. When the load is increased to 200 concurrent sessions and moving from a

single dbserver to two dbservers, the sequential model demonstrates an increase in packet

intensity of just below 570%.

The random model packet intensity improvement peaks with an increase of packet

intensity at the 100 concurrent sessions level when moving from one dbserver to four

dbservers by 760%. Under a load of 200 concurrent sessions, there is a decrease in

packet intensity, when moving from one dbserver to two dbservers, of 65% under the

random model. However, when moving from one dbserver to four dbservers under the

same load, an increase of almost 440% is observed. The packet intensity decreases in the

 - 27 -

random model when moving from one dbserver to both two and four dbservers by 40%

and almost 30% respectively.

The load balanced model packet intensity increase peeks at the 200 concurrent session

load by moving from one dbserver to four dbservers, noting an increase in packet

intensity of almost 8,000% which is the highest recorded increase of any method by over

six times. The load balanced method shows a depreciated increase in packet intensity by

about 1/2 under a load of 400 concurrent sessions, when moving from one dbserver to

two and four dbservers of 2,900% and 4,500%.

Clearly there is an increase in performance as we add more dbservers in both the random

and load balanced models. With higher session load, the performance increase is more

dramatic in the sequential and substantially notable in the load balanced model.

Performance Gain Among Different Allocation Methods

The highest average delay reduction reported occurs under the load balanced method with

a load of 200 concurrent sessions when moving from one dbserver to four dbservers,

delivering a reduction of over 99%. When testing the decrease in average delay, the load

balanced method never drops below 92% when moving from one dbserver to two

dbservers and then to four dbservers under any load from 50 concurrent connections to

400 concurrent connections.

The random method, when moving from one dbserver to two dbservers under a load of

200 concurrent sessions, is attributed with the lowest record delay increase of 180%. The

random method demonstrates a promising decrease in average delay under a load of 100

concurrent sessions by peaking with a reduction of more than 85% when moving from

one dbserver to four dbservers.

The sequential method initially demonstrates a decrease in average delay of 64% and

81% for a 50 concurrent connection model moving from one dbserver to two dbservers

and then to four dbservers respectively. The sequential model demonstrates consistent

decrease in average delay when moving from one dbserver to two dbservers and to four

dbservers under any load from 50 concurrent connections to 400 concurrent connections.

The only exception occurs with 200 concurrent sessions when moving from one dbserver

to two dbservers resulting in an increase in average delay of 8%.

Impact of Client Intensity on Design Methodology

Higher loads result in inconclusive over saturation of server utilization. Noticeable

difficulty was observed when sustaining 800 concurrent sessions of network requests

originating from a single Siege client. Additional Siege clients were utilized by

distributing the number of concurrent sessions evenly among the two Siege clients.

When adding additional Siege clients it was clear that the four dbserver model was not

sufficient to handle that number of requests. Often servers would cease functioning when

their active process count rose above 285 processes. Siege would also pause for

 - 28 -

indefinite periods of time when not enough query requests were acknowledged. This had

detrimental effects on the sequential and random models as the Siege client could not

issue new requests to available servers when it was waiting for acknowledgment of prior

requests sent for processing by saturated servers. There seemed to be no immediate

saturation concerns with the main query distribution server. It was purposefully

appropriated as a higher end system to alleviate any bottleneck in the overhead needed to

execute the PHP server distribution calls. Server recovery time was also a noteworthy

concern. In most instances it was not necessary to restart the dbservers between test

intervals. However, there appeared to be a two to five minute blackout time when it was

advisable not to initiate additional siege queries upon completion of a previous test. The

server had to reclaim resources until it could resume a steady state. There were a few

tests where Siege would throw errors rather then persisting through each session for

results. Occasionally tests were completed before the 100,000 packet goal was reached.

This would often indicate that one of the servers had engaged a security policy and

disabled the HTTP process.

Recommended Combination of Servers and Query Distribution

Method

Clearly the load balanced method has outperformed the random and even the sequential

model. Possible enhancements to the apparatus might include the following two

methods: (1) Doubling the dbservers from four to eight and running two web servers,

each serving different applications, and dynamically allocating dbservers to web server

applications as needed, and then releasing the dbserver to the other allocation server

when load increases as web client demand increases, (2) increasing the number of

dbservers to 32 running the load balanced method and testing each power of two using 2,

4, 8, 16 and 32 dbservers under a load of 400, 800, 1600 concurrent connections using

four to eight siege clients distributing the concurrent sessions among the siege clients

evenly.

Recommendations for Further Research

Modify to the Apparatus and or Methodology

Pretest each of the servers to determine if they are performing within a tolerable level

prior to each test. This can be a 50 concurrent session test executed directly against each

dbserver concurrently or successively. Determine statistical variance among each of the

loads. Determine the cause of peek performance for the load balanced model to be at 200

concurrent sessions and then diminishing with 400 concurrent sessions.

Demonstrate Scalability by Increasing Dbservers

 - 29 -

It is clear as the number of dbservers increases there is a corresponding increase in the

performance. Determine the required load to maximize justification for adding each

additional dbserver. Ask: At what point would it be advisable to add additional web

servers with segmented or dynamically allocated dbserver arrays?

Increase Client Intensity

Currently one Siege client can generate enough concurrent sessions to model 1600 clients

distributed as eight sets of 200 concurrent sessions within a five minute interval.

Additional client load would require adding an additional Siege client and distributing the

load evenly among the two clients. Data can be collected on each Siege client using

TCPDUMP. The Data can then be interpreted and a unique port address can be assigned

to each session to enable session time and packet throughput analysis.

It certainly appears that additional database nodes can result in increased performance.

This is especially true when a load balanced algorithm is used. However, it would be

expected that at some level a point of diminishing returns would be reached. The data

collected herein does not address that point. Additional research is needed to address that

question. Therefore, because only a small number of nodes were used, this study is more

significant in prototyping the process then in obtaining scaling data.

 - 30 -

References

[1] Anthes, G. (2003). “Grids Extend Reach”, Computerworld, 37(41), pp. 29-30.

 [2] Elnikety, S. et al. (2004). “A method for transparent admission control and request scheduling in e-

commerce web sites”, Proceedings of the 13th international conference on World Wide Web, pp.

276-286.

 [3] Guster, D., Safonov P., Hall C., Sundheim R. (2003). “Using Simulation to Predict Performance

Characteristics of Mirrored Hosts Used to Support WWW Applications”, Issues in Information Systems. 4

(2), 2003.

 [4] Johnson, M. (2003). “Gridlock Reality”, Computerworld, 37(41), p 24.

[5] Kanitkar, V. & Delis, A. (2002). “Distributed Query Processing on the Grid”, IEEE Transactions on

Computers, 51(3), pp.269-278.

 [6] Roussopoulos, N., Economous, N. & Stamenasm, A. (1993). “A Testbed for Incremental Access

Methods”, IEEE Transactions on Knowledge and Data Engineering, 5(5) pp.762-774.

[7] Smith, J. (2003). “Distributed Query Processing on the Grid”, International Journal of High

Performance Computing Applications, 17(4), pp.353-367.

 [8] Townsand, M. & Tsai, J. (2003). “Oracle 9i New Features”, Oracle Corporation, Redwood City, CA.

[9] Peddemors, A. J. H. & Hertzberg, L. O. (1998). “A high performance distributed database system for

enhanced Internet services”, Future Generation Computer Systems. Volume 15, Issue 3 , 1 April 1999,

Pages 407-415.

[10] Sobol, Marion G., Kagan, Albert & Shimura, Hirohisa (1996). “Performance criteria for relational

databases in different normal forms”, Journal of Systems and Software, Volume 34, Issue 1 , July 1996,

Pages 31-42.

[11] Amiri, Ali (2003). “A coordinated planning model for the design of a distributed database system”,

Information Sciences, Volume 164, Issues 1-4 , 2 August 2004, Pages 229-245.

[12] Li, Wen-Syan, Altintas, Kemal & Kantarcıolu, Murat (2004). “On demand synchronization and load

distribution for database grid-based Web applications”, Data & Knowledge Engineering, Volume 51, Issue

3 , December 2004, Pages 295-323.

[13] Welsh, Matthew David (2002). “An architecture for highly concurrent, well-conditioned Internet

services”, University of California, Berkeley; 0028, DAI, 64, no. 02B (2002): p. 819.

[14] Simhaa, Rahul & Majumdarb, Amitava (1997). “An urn model with applications to database

performance evaluation”, Computers & Operations Research, Volume 24, Issue 4, April 1997, Pages 289-

300.

[15] Xiong, Ming, Ramamritham, Krithi, Haritsa, Jayant R. & Stankovic, John A. (2001). “MIRROR: a

state-conscious concurrency control protocol for replicated real-time databases”, Information Systems,

Volume 27, Issue 4, June 2002, Pages 277-297.

 - 31 -

[16] Wu, Chienwen & Befford, Geneva G. (1996). “Improving the flexibility for replicated data

management in distributed database systems”, Computers & Industrial Engineering, Volume 31, Issues 3-4

, December 1996, Pages 901-905. 18th International Conference on Computers and Industrial Engineering.

[17] Soleimany, Cyrus & Dandamudi, Sivarama P. (2002). “Performance of a distributed architecture for

query processing on workstation clusters”, Future Generation Computer Systems, Volume 19, Issue 4 ,

May 2003, Pages 463-478. Selected papers from the IEEE/ACM International Symposium on Cluster

Computing and the Grid, Berlin-Brandenburg Academy of Sciences and Humanities, Berlin, Germany, 21-

24 May 2002.

[18] Cannataro, Mario, Talia, Domenico & Srimani, Pradip K. (2002). “Parallel data intensive computing

in scientific and commercial applications”, Parallel Computing, Volume 28, Issue 5 , May 2002, Pages

673-704.

[19] Jutla, Dawn, Bodorik, Peter and Wang, Yie (1999). “Developing internet e-commerce benchmarks”,

Information Systems, Volume 24, Issue 6 , September 1999, Pages 475-493. Information Systems Support

for Electronic Commerce.

[20] Rajamani, Karthick (2002). “Multi-tier caching of dynamic content for database-driven Web sites”,

Rice University; 0187, DAI, 63, no. 03B (2002): p. 1433.

[21] Kanitkar, Vinay Vasant (2000). “Collaborative and real-time transaction processing techniques in

client-server database architectures”, Polytechnic University; 0179, DAI, 61, no. 04B (2000): p. 2036.

[22] Huaa, Kien A., Tavanaponga, Wallapak and Lob, Yu-Lung (1999). “Performance of Load Balancing

Techniques for Join Operations in Shared-Noting Database Management Systems”, Journal of Parallel and

Distributed Computing, Volume 56, Issue 1 , January 1999, Pages 17-46.

[23] Fricksa, Ricardo M., Puliafito, Antonio & Trivedic, Kishor S. (1999). “Performance analysis of

distributed real-time databases”, Performance Evaluation, Volume 35, Issues 3-4 , May 1999, Pages 145-

169.

[24] Keyes, Jessica (1998). “Datacasting How to Stream Databases over the Internet”, McGraw-Hill, 1998.

 - 1 -

Appendix A

Siege

http://www.joedog.org/siege/

Siege is an http utility designed to benchmark web server code under loads common or

otherwise to internet loads. Siege supports basic forms of authentication, cookies,

standard HTTP and SSL (HTTPS) protocols. The main feature utilized by this model is

Siege’s ability to hit a web server with a set number of concurrent simulated users.

TCPDUMP
http://www.tcpdump.org/

TCPDUMP is a utility for capturing packet headers over a designated network interface.

For the purposes of this experiment, the output was saved to a file using the –w flag.

TCPDUMP also offers the ability to designate which parts and much of the packet header

is to be saved. The number of packets to capture parameter was set to 100,000 packets,

and in some cases resulted in less than this threshold.

http://www.joedog.org/siege/
http://www.tcpdump.org/

 - 1 -

Appendix B

PHP Code

PHP:

Sample of the PHP code used on the Apache server:

<?php

//########################

// Settings

//########################

$servers = 4; //Number of Servers

//-- $test = true for testing output

//##########################

//Function app

//##########################

define("APP_DATA_FILE",

 "/tmp/application.data");

define("LOAD_DATA_FILE",

 "/tmp/mp.txt");

function application_start ()

{

 global $_APP;

 // if data file exists, load application

 // variables

 if (file_exists(APP_DATA_FILE))

 {

 // read data file

 $file = fopen(APP_DATA_FILE, "r");

 if ($file)

 {

 $data = fread($file,

 filesize(APP_DATA_FILE));

 fclose($file);

 }

 // build application variables from

 // data file

 $_APP = unserialize($data);

 }

}

function application_end ()

{

 global $_APP;

 // write application data to file

 $data = serialize($_APP);

 $file = fopen(APP_DATA_FILE, "w");

 if ($file)

 {

 fwrite($file, $data);

 - 2 -

 fclose($file);

 }

}

function load_start ()

{

 global $_LOAD;

 // if data file exists, load application

 // variables

 if (file_exists(LOAD_DATA_FILE))

 {

 // read data file

 $file = fopen(LOAD_DATA_FILE, "r");

 if ($file)

 {

 $data = fread($file,

 filesize(LOAD_DATA_FILE));

 fclose($file);

 }

 // build application variables from

 // data file

 $_LOAD = $data;

 }

}

function load_end ()

{

 // write application data to file

 $data = "";

 $file = fopen(LOAD_DATA_FILE, "w");

 if ($file)

 {

 fwrite($file, $data);

 fclose($file);

 }

}

function reverse(&$inarray) {

 for($i = 0; $i < sizeof($inarray , 1); $i++)

 $outarray[$i] = $inarray[sizeof($inarray) - $i - 1];

 $inarray = $outarray;

}

if ($function == "sequential") {

//##############################

// Sequential server selection

//##############################

 //echo "sequential";

 application_start();

 if ($_APP["serverID"]++ >= $servers+69) {

 $_APP["serverID"] = 70;

 }

 elseif ($_APP["serverID"] < 70) {

 $_APP["serverID"] = 70;

 }

 $URL = "http://199.17.59.".$_APP["serverID"] . "/?id=parameter";

 application_end();

 - 3 -

 //echo $URL;

 header ("location: $URL");

}

elseif ($function == "load") {

//##############################

// Server selection by load

//##############################

if ($test=="true")

{

 echo "load (TeSt MoDe)
==========
";

}

$lowestUtilization = "100";

$lowestUtilizationSvr = 1;

load_start();

//---------------

// Build Array

//---------------

$delim = "%\n \n";

$loadArray = explode($delim,$_LOAD);

reverse($loadArray);

$i = 0;

//-- Initilization of server utilization Array

for ($count=1; $count <= $servers+1; $count++)

{

 $serverUtilization[] = "100";

}

//-- iterating through array

//-- • Finding most recent utilization values

$ellipsis = "...
";

while (list($IndexValue, $ElementContents) = each($loadArray))

{

 $i++;

 // -- Get Server

 $serverID =

str_replace("db","",str_replace(".","",strrev(strrchr(strrev($loadArray[$i]),".

"))));

 if ($serverID > 0)

 {

 // -- Get utilization percent

 $utilization = abs(strchr($loadArray[$i],"\t")/100);

 if ($test=="true" && $i < 20)

 {

 echo "Server($serverID) = $utilization
";

 }

 elseif ($test =="true")

 {

 echo "$ellipsis";

 $ellipsis = "";

 }

 if ($serverUtilization[$serverID] == "100")

 {

 $serverUtilization[$serverID] = $utilization;

 }

 }

}

//-- Saving utilization in Application Session Variables and finding lowest

utilization

application_start();

for ($count=1; $count < $servers+1; $count++)

 - 4 -

{

 if ($serverUtilization[$count] == "100" && $_APP[$count] > 0)

 {

 $serverUtilization[$count] = $_APP[$count];

 }

 $_APP[$count] = $serverUtilization[$count];

 if ($test=="true")

 {

 echo "Application Session-->SERVER($count) = $_APP[$count]
";

 }

 // -- Determining lowest utilization

 if ($lowestUtilization > $serverUtilization[$count])

 {

 $lowestUtilization = $serverUtilization[$count];

 $lowestUtilizationSvr = $count;

 }

}

if ($test=="true")

{

 echo "LOWEST UTILIZATION is SERVER $lowestUtilizationSvr @

$lowestUtilization Utilization
";

}

application_end();

$lowestUtilizationSvr += 69;

$URL = "http://199.17.59.".$lowestUtilizationSvr . "/?id=parameter";

//-- Check value of $i > 100 then flush load file

if ($i > 100)

{

 load_end();

}

if ($test=="true")

{

 echo "Redirect to ---> $URL";

}

else

{

 header ("location: $URL");

}

}

else {

//##############################

// Random server selection

//##############################

//echo "random";

 $r = rand(0,$servers-1);

 $URL = "http://199.17.59.7$r" . "/?id=parameter";

 //echo $URL;

 header ("location: $URL");

}

application_end();

exit;

?>

 - 5 -

Output test screen on browser under no load (4 servers):

load (TeSt MoDe)

==========

Server(1) = 0.04

Server(2) = 0.02

Server(3) = 0.02

Server(4) = 0

Server(1) = 0

Server(2) = 0

Server(3) = 0.03

Server(4) = 0.01

Server(1) = 0.01

Server(2) = 0.01

Server(3) = 0.01

Server(4) = 0.01

Server(1) = 0

Server(2) = 0.01

Server(3) = 0.01

Server(4) = 0.04

Server(1) = 0.01

Server(2) = 0.04

Server(3) = 0.01

...

Application Session-->SERVER(1) = 0.04

Application Session-->SERVER(2) = 0.02

Application Session-->SERVER(3) = 0.02

Application Session-->SERVER(4) = 0

LOWEST UTILIZATION is SERVER 4 @ 0 Utilization

Redirect to ---> http://199.17.59.73/?id=parameter

Output test screen on browser under no load (2 servers):
load (TeSt MoDe)

==========

Server(3) = 0.01

Server(4) = 0.01

Server(1) = 0.04

Server(2) = 0

Server(3) = 0.03

Server(4) = 0.01

Server(1) = 0

Server(2) = 0.01

Server(3) = 0.01

Server(4) = 0

Server(1) = 0.01

Server(2) = 0.01

Server(3) = 0.01

Server(4) = 0.04

Server(1) = 0.01

Server(2) = 0.01

Server(3) = 0.01

Server(4) = 0.02

Server(1) = 0.04

...

Application Session-->SERVER(1) = 0.04

Application Session-->SERVER(2) = 0

 - 6 -

LOWEST UTILIZATION is SERVER 2 @ 0 Utilization

Redirect to ---> http://199.17.59.71/?id=parameter

Output test screen on browser under full load (8 iterations of 400 concurrent

sessions using 4 servers):
load (TeSt MoDe)

==========

Server(3) = 0

Server(4) = 0.01

Server(3) = 0.05

Server(2) = 0.69

Server(1) = 0.97

Server(4) = 0.01

Server(3) = 0.01

Server(2) = 0.49

Server(4) = 0.04

Server(1) = 0.01

Server(3) = 0.01

Server(2) = 0.01

Server(4) = 0.01

Server(1) = 0.04

Server(3) = 0

Server(2) = 0.04

Server(4) = 0

Server(1) = 0

Server(3) = 0.02

...

Application Session-->SERVER(1) = 0.97

Application Session-->SERVER(2) = 0.69

LOWEST UTILIZATION is SERVER 2 @ 0.69 Utilization

Redirect to ---> http://199.17.59.71/?id=parameter

Output test screen on browser under full load (8 iterations of 400 concurrent

sessions using 2 servers):
load (TeSt MoDe)

==========

Server(3) = 0

Server(2) = 0.01

Server(4) = 0.01

Server(3) = 0.02

Server(2) = 0.01

Server(1) = 0.99

Server(4) = 0

Server(3) = 0

Server(2) = 0.01

Application Session-->SERVER(1) = 0.99

Application Session-->SERVER(2) = 0.01

Application Session-->SERVER(3) = 0

Application Session-->SERVER(4) = 0.01

LOWEST UTILIZATION is SERVER 3 @ 0 Utilization

Redirect to ---> http://199.17.59.72/?id=parameter

PHP:

 - 7 -

Sample of the PHP code used on each of the dbservers:

<html>

<?php

 $DBhost = $_SERVER['SERVER_ADDR'];

 $DBuser = "sa";

 $DBpass = "sa";

 # Connect to the DataBase

 $link = mysql_connect($DBhost, $DBuser, $DBpass)

 or die("Unable to connect to database");

print "<head><title>Connect Server $DBhost</title></head>\r\n";

print "<body>\r\n";

print "$DBhost
";

echo "id= $id
";

//###############

// 1) Continent

//###############

$sql[] = "SELECT cont AS Continent \r\n ".

 "FROM hamlog \r\n " .

 "GROUP BY Continent \r\n ";

//###############

// 2) State

//###############

$sql[] = "SELECT state AS State \r\n ".

 "FROM hamlog \r\n " .

 "GROUP BY State \r\n ";

//###############

// 3) Band

//###############

$sql[] = "SELECT DISTINCT band AS Band \r\n ".

 "FROM hamlog \r\n " .

 "GROUP BY Band \r\n ";

//##############################

// 4) TOP 50 Counties & States

//##############################

$sql[] = "SELECT \r\n ".

 " count(*) as c, \r\n ".

 " cnty AS County, \r\n ".

 " state AS State \r\n ".

 "FROM hamlog \r\n ".

 "GROUP BY \r\n ".

 " State, \r\n ".

 " County \r\n ".

 "HAVING \r\n ".

 " LENGTH(County) > 0 AND \r\n ".

 " LENGTH(State) > 0 \r\n ".

 "ORDER BY \r\n ".

 " c DESC, \r\n ".

 " State, \r\n ".

 - 8 -

 " County \r\n ".

 "LIMIT 50 \r\n ";

//###############

// 5) Power

//###############

$sql[] = "SELECT pwr AS Power \r\n ".

 "FROM hamlog \r\n " .

 "GROUP BY Power \r\n ";

//##################

// 6) TOP 25 Grids

//##################

$sql[] = "SELECT \r\n " .

 " count(grid) AS c, \r\n " .

 " grid AS Grid \r\n ".

 "FROM hamlog \r\n " .

 "GROUP BY Grid \r\n " .

 "ORDER BY c DESC \r\n " .

 "LIMIT 25 \r\n ";

//##############################

// 7) Top 25 Names

//##############################

$sql[] = "SELECT \r\n " .

 " COUNT(name) AS c, \r\n ".

 " name AS Name \r\n ".

 "FROM hamlog \r\n " .

 "GROUP BY \r\n ".

 " Name \r\n " .

 "ORDER BY \r\n ".

 " c DESC, \r\n " .

 " Name \r\n " .

 "LIMIT 25 \r\n ";

//#############################

// 8) Select 1 random record

//#############################

$sql[] = "SELECT * \r\n ".

 "FROM hamlog \r\n " .

 "ORDER BY rand() \r\n " .

 "LIMIT 1 \r\n ";

//##############################

// 9) Select 10 random records

//##############################

$sql[] = "SELECT * \r\n ".

 "FROM hamlog \r\n " .

 "ORDER BY rand() \r\n " .

 "LIMIT 10 \r\n ";

//##############################

// 10) Select 50 random records

//##############################

$sql[] = "SELECT * \r\n ".

 "FROM hamlog \r\n " .

 "ORDER BY rand() \r\n " .

 "LIMIT 50 \r\n ";

$r = rand(0,count($sql)-1);

//$r = 5;

echo "==========
";

 - 9 -

echo "SQL #$r
";

echo "==========
";

echo "<pre>$sql[$r]</pre>";

//exit;

$db="db1";

if (! $link)

die("Couldn't connect to MySQL");

mysql_select_db($db , $link)

or die("Couldn't open $db: ".mysql_error());

$result = mysql_query($sql[$r])

or die("SELECT Error: ".mysql_error());

$num_rows = mysql_num_rows($result);

print "
";

print "$num_rows record(s) found.<P>";

print "<table width=200 border=1>\n";

while ($get_info = mysql_fetch_row($result)){

print "<tr>\n";

foreach ($get_info as $field)

print "\t<td>$field</td>\n";

print "</tr>\n";

}

print "</table>\n";

mysql_free_result($result);

mysql_close($link);

?>

</body>

</html>

 10

Output dbserver query results (i.e. sample data of packet payload contents) :

The data was drawn (with permission) from the amateur radio station log of Lee Lorentz, licensed as WBØTRA.

Sample #1
199.17.59.70

id=

==========

SQL #7

==========

SELECT *

 FROM hamlog

 ORDER BY rand()

 LIMIT 1

1 record(s) found.

888

0

N5RL

Q

2002

-11-

17

21553

1

5

9

5

9

ESTHER

GOLLIHA

R

SAN

ANTONI

O

US

B

14.28047

7
0
20

M

T

X
K X X

WB0TR

A

SSSB0

2

10

0

EL09R

H
 4 7

BEXA

R

N

5
0

Sample #2
199.17.59.70

id=

==========

SQL #9

==========

SELECT *

 FROM hamlog

 ORDER BY rand()

 LIMIT 50

50 record(s) found.

759

1

L75F

M

200

2-

004

022

5

9

5

9
 USB

21.34

788
0
1

5
 LU F X

WB0

TRA

WPXSB

02

1

0

S

A

1

3

L

7
0

 11

03-

30

M 0 5

502

3

W7BA

S

200

1-

10-

27

003

822

5

9

5

9
BRUCE KENMORE USB

28.70

9
0

1

0

M

W

A
K X X

WB0

TRA

CQWWS

B01

1

0

0

CN8

7VS

N

A
3

W

7
0

268

3

AC7D

U

200

0-

08-

05

042

500

042

500

5

9

5

7
BRUCE BOISE SSB

50.12

5
0
6

M

I

D
K F F

WB0

TRA

1

0

0

DN1

3UN

N

A
3 6

A

C

7

0

656

5
WJ0M

200

2-

02-

02

145

031

5

9

5

9
DICK DULUTH LSB 7.25 0

4

0

M

M

N
K X X

WB0

TRA

MNQP0

2

1

0

0

N

A
4 7

W

J

0

0

610

8

WA3J

MV

200

2-

01-

19

195

530

5

9

5

9
STAN BROOMALL USB

28.42

7
0

1

0

M

P

A
K X X

WB0

TRA

NAQPS

B01

1

0

0

FM2

9HX
 5 8

DELAWA

RE

W

A

3

0

447

5

NA3D

X

200

1-

06-

23

194

457

5

9

9

5

9

9

EXPLOR

ERS
LOTHIAN CW

14.01

462
0

2

0

M

M

D
K F R

WB0

TRA

FD

2001

1

0

0

FM1

8QT

N

A

3

0

797

4
OL5Q

200

2-

03-

31

172

417

5

9

5

9

CONTES

T STN

QSL VIA

OK1HRA
USB

28.39

41
0

1

0

M

 OL F F
WB0

TRA

WPXSB

02

1

0

0

JO6

0VI

E

U

1

5

2

8

O

L

5

0

144
HA3M

N

199

6-

08-

02

220

000

220

100

5

7

5

7
EGON HUNGARY SSB

14.18

2
0

2

0

M

 HA F X
WB0

TRA

8

0

E

U

1

5

2

8

H

A

3

0

810

6
PS5S

200

2-

03-

31

221

140

5

9

5

9
 USB

28.48

358
0

1

0

M

 PY X X
WB0

TRA

WPXSB

02

1

0

0

S

A

1

1

P

S

5

0

 12

746

7

JH7A

FR

200

2-

03-

03

224

355

5

9

5

9

TETSUO

BABA
JAPAN USB

28.37

5
0

1

0

M

 JA X X
WB0

TRA

ARDXS

B02

1

0

0

A

S

2

5

4

5

J

H

7

0

849

8
W0SD

200

2-

11-

16

221

134

5

9

5

9

EDWARD

GRAY
SALEM USB

21.36

652
0

1

5

M

S

D
K F F

WB0

TRA

SSSB0

2

1

0

0

EN1

3GP
 4 7 MCCOOK

W

0
0

370

7

KE6R

D

200

1-

03-

24

194

821

5

9

5

9

KATSUM

I
TORRANCE USB

28.33

4
0

1

0

M

C

A
K X X

WB0

TRA

WPXSB

01

1

0

0

DM0

3UT

N

A
3

K

E

6

0

777

3
SN2B

200

2-

03-

30

165

818

5

9

5

9
 USB

21.21

34
0

1

5

M

 SP X X
WB0

TRA

WPXSB

02

1

0

0

E

U

1

5

S

N

2

0

384

6

KC7C

XR

200

1-

03-

25

033

606

5

9

5

9
ERIC PULLMAN USB

14.28

4
0

2

0

M

W

A
K F F

WB0

TRA

WPXSB

01

1

0

0

DN1

6JR

N

A
3 6

WHITMA

N

K

C

7

0

612

5

K1GL

J

200

2-

01-

19

201

119

5

9

5

9
GREG FLORENCE USB

28.42

7
0

1

0

M

V

T
K X X

WB0

TRA

NAQPS

B01

1

0

0

FN3

3LR
 5 8

RUTLAN

D

K

1
0

947

0

PA0I

JM

200

2-

12-

15

162

134

5

9

5

9

J

KIKKER

T

NETHERLA

NDS
USB

28.35

6048
0

1

0

M

 PA F F
WB0

TRA

02ARL

10M

1

0

0

E

U

1

4

2

7

P

A

0

0

822

2

OD5N

H

200

2-

05-

30

023

817

023

900

5

9

5

5

PUZANT

AZIRIA

N

BEIRUT USB 18.13 0

1

7

M

 OD F F
WB0

TRA

1

0

0

KM7

3SV

A

S

2

0

3

9

O

D

5

0

300

7
W4AN

200

0-

064

600

5

9

5

9
BILL

ALPHARET

TA
LSB 3.78 0

8

0

G

A
K F F

K0B

LR

SSSB2

000

1

0

EM7

4VC
 5 8

LUMPKI

N

W

4
0

 13

11-

19

M 0

486 N6KI

199

6-

11-

17

171

600

171

600

5

9

5

9
DENNIS

SAN

DIEGO
SSB

14.22

2
0

2

0

M

C

A
K F F

WB0

TRA

SWPS9

6

1

0

0

DM1

2KV

N

A
3 6

SAN

DIEGO

N

6
0

178

0

JH7P

KU

199

9-

10-

31

003

800

003

800

5

9

5

9

TAKESH

I
JAPAN SSB

28.46

26
0

1

0

M

 JA F F
WB0

TRA

99CQW

WPH

1

0

0

QM0

7IQ

A

S

2

5

4

5

J

H

7

0

410

4

KH6T

Y/4

200

1-

04-

05

001

100

005

100

5

9

9

5

9

9

HOWARD

TELLER

MT

PLEASANT

PSK

31

14.07

19
0

2

0

M

S

C
K F F

WB0

TRA

2

5

FM0

2BT

O

C
5 8

CHARLE

STON

K

H

6

0

798

9

F6KF

I

200

2-

03-

31

174

220

5

9

5

9

RC DU

REF

SARTHE

F-72000

LE MANS
USB

28.66

81
0

1

0

M

 F X X
WB0

TRA

WPXSB

02

1

0

0

E

U

1

4

F

6
0

576

8

KB7R

UQ

200

1-

12-

16

212

607

5

9

5

9
JAMES CLINTON USB

28.62

4
0

1

0

M

U

T
K F F

WB0

TRA

ARL10

M01

1

0

0

DN3

1XC
 3 6 DAVIS

K

B

7

0

827

9
N4CC

200

2-

06-

15

005

759

5

9

5

7

GREGOR

Y

WILSON

CALLAHAN USB
50.17

5
0
6

M

F

L
K F F

WB0

TRA

1

0

0

EM8

0

N

A
5 8 NASSAU

N

4
0

105

44

XE2A

C

200

3-

03-

02

221

621

5

9

5

9
LUIS MEXICO USB

21.27

194
0

1

5

M

 XE X X
WB0

TRA

ARDXS

B03

1

0

0

N

A
6

1

0

X

E

2

0

894

9

VE3M

IS

200

2-

11-

17

233

208

5

9

5

9

MISSIS

SAUGA

AMAT

MISSISSA

UGA
LSB 7.158 0

4

0

M

 VE X X
WB0

TRA

SSSB0

2

1

0

0

N

A
4

O

N

V

E

3

0

 14

438

0

KB8S

CR

200

1-

06-

23

180

403

5

9

5

9
DAVID

FORT

RECOVERY
USB

14.31

2
0

2

0

M

O

H
K X X

WB0

TRA

FD

2001

1

0

0

EN7

0OK

K

B

8

0

244

8

RZ1A

WO

200

0-

03-

05

013

700

013

700

5

9

5

9
 RUSSIA SSB

14.33

14
0

2

0

M

 UA F X
WB0

TRA

00ARL

DXP

1

0

0

E

U

1

6

R

Z

1

0

776

0
AK3Z

200

2-

03-

30

150

322

5

9

5

9
JOHN

WESTMINS

TER
USB

14.20

6
0

2

0

M

M

D
K X X

WB0

TRA

WPXSB

02

1

0

0

FM1

9MN

N

A
5

A

K

3

0

351

4
RD4M

200

1-

03-

18

030

327

030

400

5

9

5

9
 RUSSIA USB

14.16

035
0

2

0

M

 UA F F
WB0

TRA

1

0

0

LO4

4TF

E

U

1

6

1

9

R

D

4

0

761

3

VA7D

P

200

2-

03-

30

011

648

5

9

5

9

G

DOUGLA

S

PICHET

PENTICTO

N
USB

21.20

51
0

1

5

M

 VE X X
WB0

TRA

WPXSB

02

1

0

0

N

A
3

B

C

V

A

7

0

197

3
W2GG

199

9-

11-

21

063

504

063

504

5

9

5

9
ROBERT SPARKS SSB 3.819 0

8

0

M

M

D
K F F

WB0

TRA

SWPS9

9

1

0

0

FM1

9PN

N

A
5 8

BALTIM

ORE

W

2
0

845

1
K6GT

200

2-

11-

16

211

431

5

9

5

9
GEORGE

SUNNYVAL

E
USB

28.39

8795
0

1

0

M

C

A
K X X

WB0

TRA

SSSB0

2

1

0

0

CM8

7XI
 3 6

SANTA

CLARA

K

6
0

103

15

KG4N

OZ

200

3-

02-

01

210

704

5

9

5

9
RON

LAWRENCE

BURG
USB

14.23

6
0

2

0

M

T

N
K F F

WB0

TRA

MNQP2

003

1

0

0

EM6

5IF

N

A
4 8

LAWREN

CE

K

G

4

0

120

5
N4PN

199

8-

173

203

173

203

5

9

5

9
PAUL

ST

GEORGE
SSB

21.42

6
0
1

5

F

L
K F F

WB0

TRA

98CQW

WDX

1

0

N

A
5 8

FRANKL

IN

N

A

N

4
0

 15

10-

25

ISLAND M 0 -

0

8

5

267

1

PY2R

IK

200

0-

07-

06

032

600

032

800

5

9

+

5

4

RICARD

O
BRAZIL SSB

21.23

8
0

1

5

M

 PY F F
WB0

TRA

1

0

0

S

A

1

1

P

Y

2

0

223
WA1P

RY

199

6-

08-

18

044

500

044

500

5

9

5

9
LLOYD AUSTIN SSB 7.248 0

4

0

M

T

X
K F X

WB0

TRA

NAQP_

96

8

0

N

A
4 7 TRAVIS

W

A

1

0

603

0

WB7T

IR

200

2-

01-

19

184

652

5

9

5

9
GALE RIDDLE USB

28.42

7
0

1

0

M

O

R
K F F

WB0

TRA

NAQPS

B01

1

0

0

CN8

2HW
 3 6

DOUGLA

S

W

B

7

625

50

984

9

N2EA

B

200

3-

01-

18

193

913

5

9

5

9
MIKE

PEEKSKIL

L
USB 21.36 0

1

5

M

N

Y
K X X

WB0

TRA

NAQP0

3JS

1

0

0

 5 8
WESTCH

ESTER

N

2
0

126

0

VE6J

Y

199

8-

10-

25

215

633

215

633

5

9

5

9
DONALD ALBERTA SSB

14.27

2
0

2

0

M

 VE F X
WB0

TRA

98CQW

WDX

1

0

0

N

A
4

A

B

V

E

6

0

108

34
PR2F

200

3-

10-

26

212

140

5

9

5

9
 USB

28.58

6615
0

1

0

M

 PY X X
WB0

TRA

CQWW2

003

1

0

0

S

A

1

1

P

R

2

0

228

0

DJ7A

A

200

0-

03-

04

062

100

062

100

5

9

5

9

WILFRI

ED

GOTTSC

H

GERMANY SSB
14.27

47
0

2

0

M

 DL X X
WB0

TRA

00ARL

DXP

1

0

0

E

U

1

4

2

8

D

J

7

0

272

9

K0BL

R

200

0-

175

300

175

300

3

3

1

3
BEN

ST

JOSEPH
SSB

50.12

5
0
6

M

M

N
K F F

WB0

TRA

1

0

EN2

5

N

A
4 7

STEARN

S

K

0
0

 16

08-

27

0

234

9

V47K

P

200

0-

03-

04

191

300

191

300

5

9

5

9

ST KITTS

/ NEVIS
SSB

21.30

4
0

1

5

M

 V4 F F
WB0

TRA

00ARL

DXP

1

0

0

N

A
8

1

1

V

4

7

0

663 N9AF

199

7-

03-

09

214

900

214

900

5

9

5

9

FREDER

ICK

PLAINFIE

LD
SSB 3.868 0

8

0

M

I

N
K F R

WB0

TRA

WI

QSO

1

5

0

EM6

9TR

N

A
5 8

HENDRI

CKS

N

9
0

377

9

KD5F

KY

200

1-

03-

24

222

204

5

9

5

9
JAMES WACO USB 21.25 0

1

5

M

T

X
K X X

WB0

TRA

WPXSB

01

1

0

0

EM1

1JN

N

A
4

K

D

5

0

416

7
N2MR

200

1-

04-

21

024

221

5

9

9

5

9

9

MARK

SMITH

FRANKLIN

VILLE

PSK

31

14.06

95
0

2

0

M

N

J
K X X

WB0

TRA

PSK20

01

2

5

FM2

9LO

N

A
5

GLOUCE

STER

N

2
0

916

7
N2BJ

200

2-

12-

14

182

616

5

9

5

9
BARRY

NEW

LENOX
USB

28.68

5083
0

1

0

M

I

L
K X X

WB0

TRA

02ARL

10M

1

0

0

EN6

1AM

N

2
0

103

55

KB0L

XE

200

3-

02-

01

150

700

5

9

5

9
GARY BIG LAKE USB 50.13 0

6

M

M

N
K X X

WB0

TRA

MNQP2

003

1

0

0

N

A
4 7

SHERBU

RNE

K

B

0

0

126

7
VP2E

199

8-

10-

25

222

550

222

550

5

9

5

9

DX

CONTES

T

GROUP

LEEWARD

ISLANDS
SSB 21.27 0

1

5

M

VP

2-

E

F X
WB0

TRA

98CQW

WDX

1

0

0

N

A
8

1

1

V

P

2

0

 17

Sample #3
199.17.59.70

id=

==========

SQL #3

==========

SELECT

 count(*) as c,

 cnty AS County,

 state AS State

 FROM hamlog

 GROUP BY

 State,

 County

 HAVING

 LENGTH(County) > 0 AND

 LENGTH(State) > 0

 ORDER BY

 c DESC,

 State,

 County

 LIMIT 50

50 record(s) found.

78 STEARNS MN

73 KING WA

61 HENNEPIN MN

57 SANTA CLARA CA

55 WRIGHT MN

54 WAKE NC

49 LOS ANGELES CA

48 MEEKER MN

38 HARRIS TX

36 DALLAS TX

34 SAN DIEGO CA

32 MONTGOMERY MD

29 MIDDLESEX MA

26 SAN MATEO CA

26 HONOLULU HI

25 ORANGE CA

25 OAKLAND MI

24 MARICOPA AZ

23 ALAMEDA CA

23 COOK IL

23 WESTCHESTER NY

22 ALLEGHENY PA

 18

20 HILLSBOROUGH NH

20 MULTNOMAH OR

19 YUMA AZ

19 MESA CO

19 KANE IL

19 PRINCE GEORGES MD

18 NEW HAVEN CT

18 ADA ID

18 DUTCHESS NY

18 PROVIDENCE RI

18 PIERCE WA

17 CONTRA COSTA CA

17 JACKSON MO

17 SUFFOLK NY

17 WASHINGTON OR

17 DAVIDSON TN

17 CHITTENDEN VT

16 SACRAMENTO CA

16 GWINNETT GA

16 ERIE NY

15 BOULDER CO

15 SAINT CLAIR IL

15 RAMSEY MN

15 CLACKAMAS OR

14 SANTA CRUZ CA

14 FAIRFIELD CT

14 MARION IN

14 DAKOTA MN

 - 1 -

Appendix C

Process of Importing TCPDUMP output into Microsoft SQL

Server and Microsoft Excel

 Import TCPDUMP into MS SQL Server.

DTS Package

 - 2 -

DTS: Create Table

 - 3 -

DTS: Connection 1 (Text data file)

 - 4 -

DTS: Transformation

 - 5 -

 - 6 -

 - 7 -

DTS: Destination

-- SQL used to create a data table for each test (NOTE Table name

changes to match log file naming convention.)

CREATE TABLE [Thesis].[dbo].[logfile_s2_1_load_0] (

[tStamp] varchar (255) NULL,

[macSrc] varchar (255) NULL,

[macDes] varchar (255) NULL,

[payload] varchar (255) NULL,

[addressSrc] varchar (255) NULL,

[dir] varchar (255) NULL,

[addressDes] varchar (255) NULL,

[protocal] varchar (255) NULL,

[fragment] varchar (255) NULL

)

 - 8 -

DST: Execution

Step 3: Create Stored procedures and views used in determining Average Delay,

Throughput and Packet Intensity. One set of views, and stored procedure is created

for each data set.

i. Drop standard view if already created
if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[logfile_s2_1_loadView]') and OBJECTPROPERTY(id,

N'IsView') = 1)

drop view [dbo].[logfile_s2_1_loadView]

GO

ii. Create standard view
CREATE VIEW dbo.logfile_s2_1_loadView

AS

SELECT TOP 100 PERCENT

 tStamp,

 CAST(REPLACE(payload, ':', '') AS int) AS payload,

 addressSrc,

 addressDes,

 REPLACE(RIGHT(addressDes,CHARINDEX('.',REVERSE(addressDes))-1

),':','') as temp,

 CASE RIGHT(addressSrc, 3)

 - 9 -

 WHEN '.80' THEN

REPLACE(RIGHT(addressDes,CHARINDEX('.',REVERSE(addressDes))-1

),':','')

 ELSE

RIGHT(addressSrc,CHARINDEX('.',REVERSE(addressSrc))-1)

 END

 AS portSrc,

 CAST(LEFT(tStamp, 2) AS decimal(10, 6)) * 3600 +

 CAST(SUBSTRING(tStamp, 4, 2) AS decimal(10, 6)) * 60

+

 CAST(SUBSTRING(tStamp, 7, 9) AS decimal(10, 6)) AS t

FROM dbo.logfile_s2_1_load

ORDER BY portSrc, tStamp

GO

iii. Drop throughput view if already created
if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[logfile_s2_1_loadView_tp]') and

OBJECTPROPERTY(id, N'IsView') = 1)

drop view [dbo].[logfile_s2_1_loadView_tp]

GO

iv. Create throughput view
CREATE VIEW dbo.logfile_s2_1_loadView_tp

AS

SELECT TOP 100 PERCENT portSrc, MAX(t) - MIN(t) AS t,

SUM(payload) AS payload

FROM dbo.logfile_s2_1_loadView

GROUP BY portSrc

ORDER BY portSrc

GO

v. Drop stored procedure if already created
if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[lf_s2_1_load_stat]') and OBJECTPROPERTY(id,

N'IsProcedure') = 1)

drop procedure [dbo].[lf_s2_1_load_stat]

GO

 - 10 -

vi. Create statistics stored procedure
CREATE PROCEDURE [dbo].[lf_s2_1_load_stat] AS

/*

Convention

==========

 logfile_s2_1_load

 ------- - -- - ---

 | | | | |

 logfile - initial filename -----/ | | | |

 | | | |

 z - data from zeus client -----------/ | | |

 | | |

 s# - 1 = using 1 server | | |

 2 = using 2 servers | | |

 4 = using 4 servers ---------------/ | |

 | |

 # - 1 = 50 concurrent sessions | |

 2 = 100 concurrent sessions | |

 3 = 200 concurrent sessions | |

 4 = 400 concurrent sessions ----------/ |

 |

 Seq - seq = sequence |

 ran = random ---------------------------/

*/

--################

--logfile_s2_1_load

--################

-- AVERAGE DELAY

SELECT

 (MAX(t) - MIN(t))/count(portSrc) / 2 AS Average_Delay

FROM

 dbo.logfile_s2_1_loadView

-- THROUGHPUT

SELECT

 SUM(payload)/sum(t) AS Throughput

FROM

 dbo.logfile_s2_1_loadView_tp

-- PACKET INTENSITY

SELECT

 count(portSrc)/(MAX(t) - MIN(t)) AS Packet_Intensity

FROM

 dbo.logfile_s2_1_loadView

GO

vii. Execute stored procedure
lf_s2_1_load_stat

 - 11 -

viii. Results
Average_Delay

.0001662230122126350

(1 row(s) affected)

Throughput

298088.1711530463984497266

(1 row(s) affected)

Packet_Intensity

3008.0070944712852680828

(1 row(s) affected)

Step 5: Load data into Excel

i. Sample Excel column of load balanced data from 4 servers using 8

iterations of 50 concurrent sessions.

NOTE: Excel data is derived based on the throughput view in step 3 above.

portSeq time payload

57964 0.010289 1049

57965 0.147174 31238

57966 0.00319 696

57967 0.002593 1049

57968 0.092772 9705

57969 0.002683 1049

57970 0.217409 13198

57971 0.00261 1049

57972 0.468031 13664

57973 0.002636 1049

57974 0.830308 197832

57975 0.002736 1049

57976 0.895952 18450

57977 0.002433 1049

57978 0.002519 1049

57979 1.011154 31815

. . .

. . .

. . .

